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Thermo-nuclear Fusion

ηEf is the usable energy

The loss is (1− η)(E0 + Eb)

E0 = 3nkT , Eb = bn2τ
√

T (thermal bremsstralung)

Giving the gain factor: Q = ηεnτvσ

4(1−η)(3kT +bnτ
√

T )

Q must be Q > 1 for energy production

This also means nτ > 3kT (1−η)
1
4 εη〈vσ〉−b(1−η)

√
T
→ LC
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Lawson criterion

Fulfilling the Lawson criterion

Magnetically confined plasmas: increase confinement time

Inertial confinement fusion: increase density of fusion plasma
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Direct vs Indirect drive
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Hohlraum 2014

[O.A. Hurricane et al., Nature, 506, 343 (2014)]
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Hohlraum 2022

[A.B, Zylstra, O.A. Hurricane et al., Nature, 601, 542-548 (2022)]
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Rayleigh-Taylor instabilities

Latest (January 2023) news 3.15MJ kinetic energy at NIF with burning
time of 89-137 ps(?)

14 / 48



Introduction
Modelling the Nanorod

Conclusions and the future

Inertial Confinement Fusion
Two ways
Radiation Dominated Implosion
Absorptivity by nano-technology

RFD

[Csernai, L.P. (1987). Detonation on a time-like front for relativistic
systems. Zh. Eksp. Teor. Fiz. 92, 379-386.]
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Constant absorptivity

[L.P. Csernai & D.D. Strottman, Laser
and Particle Beams 33, 279 (2015)]

αkmiddle = αkedge

Simultaneous volume ignition is only up
to 12%
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Changing absorptivity
[Csernai, L.P., Kroo, N. and Papp, I.
(2017). Procedure to improve the
stability and efficiency of laser-fusion by
nano-plasmonics method. Patent
P1700278/3 of the Hungarian
Intellectual Property Office.]

αkmiddle ≈ 4× αkedge

Simultaneous volume ignition is up to
73%
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Flat target

Schematic view of the cylindrical, flat target of radius, R, and thickness, h.
V = 2πR3, R = 3

√
V /(2π), h = 3

√
4V /π.

[L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H.
Stöcker & N. Kroó, Radiation- Dominated Implosion with Flat Target, Physics and
Wave Phenomena, 28 (3) 187-199 (2020)]
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Varying absorptivity

(a) (b)

Deposited energy per unit time in the space-time plane across the depth, h, of the
flat target. (a) without nano-shells (b) with nano-shells
To increase central absorption we used the following distribution:

αns (s) = αC
ns + αns (0) · exp

[
4×

(
s

100

)2(
s

100
− 1
) (

s
100

+ 1
)] .

21 / 48



Introduction
Modelling the Nanorod

Conclusions and the future

Inertial Confinement Fusion
Two ways
Radiation Dominated Implosion
Absorptivity by nano-technology

Similar Configuration with success
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Field solver:
ε(ω) = 1− ω2

p

(ω2+iγω)

where ωp is the plasma frequency:
√

ne e2

m′ε0

γ is the damping factor or collision frequency: γ = 1
τ and τ is the

average time between collisions
Particle simulation:

∂E
∂t = 1

µ0ε0
∇× B − J

ε0
, ∂B
∂t = −∇× E

γi miv i = qi (E i + v i × B i ), γi is the relativistic factor
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[W. J. Ding,et al., Particle simulation of plasmons Nanophotonics, vol. 9, no.
10, pp. 3303-3313 (2020)]
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Particle In Cell methods

[F.H. Harlow (1955). A Machine
Calculation Method for Hydrodynamic
Problems. Los Alamos Scientific
Laboratory report LAMS-1956]

[T.D. Arber et al 2015 Plasma Phys.
Control. Fusion 57 113001]

A super-particle (marker-particle) is a
computational particle that represents
many real particles.

Particle mover or pusher algorithm as
(typically Boris algorithm).

Finite-difference time-domain
method for solving the time evolution
of Maxwell’s equations.
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General layout of the EPOCH code

[EPOCH 4.0 dev
manual]

(input) deck

housekeeping

io

parser

physics packages

user interaction
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FDTD in EPOCH

E n+ 1
2

= E n + ∆t
2

(
c2∇× Bn − j n

ε0

)
Bn+ 1

2
= Bn − ∆t

2

(
∇× E n+ 1

2

)
Call particle pusher which calculates jn+1

Bn+1 = Bn+ 1
2
− ∆t

2

(
∇× E n+ 1

2

)
E n+1 = E n+ 1

2
+ ∆t

2

(
c2∇× Bn+1 −

j n+1

ε0

)
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Particle pusher

Solves the relativistic equation of motion under the Lorentz force for each
marker-particle

pn+1 = pn + q∆t
[
En+ 1

2

(
xn+ 1

2

)
+ vn+ 1

2
× Bn+ 1

2

(
xn+ 1

2

)]
p is the particle momentum q is the particle’s charge v is the velocity.

p = γmv , where m is the rest mass γ =
[
(p/mc)2 + 1

]1/2

Villasenor and Buneman current deposition scheme [Villasenor J & Buneman O
1992 Comput. Phys. Commun. 69 306], always satisfied: ∇ · E = ρ/ε0, where ρ
is the charge density.
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Particle shape

First order approximations are considered

Fpart = 1
2
Fi−1

(
1
2

+ xi−X
∆x

)2

+ 1
2
Fi

(
3
4
− (xi−X )2

∆x2

)2

+ 1
2
Fi+1

(
1
2

+ xi−X
∆x

)2

[EPOCH 4.0 dev manual]
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Metal Nanoparticles as Plasmas in Vacuum

The conduction band electrons in metals behave as strongly
coupled plasmas.
For golden nanorods of 25nm diameter in vacuum this gives an
effective wavelength of λeff = 266nm

λeff
2Rπ = 13.74− 0.12[ε∞+141.04]− 2

π + λ
λp

0.12
√
ε∞+141.04

[Lukas Novotny, Effective Wavelength Scaling for Optical
Antennas, Phys. Rev. Lett. 98, 266802 (2007).]
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Metal Nanoparticles as Plasmas in UDMA-Tegdma

For golden nanorods of 25nm diameter in vacuum this gives an
effective wavelength of λeff /2 = 85nm
The propagation velocity of light inside the medium is reduced
to cs = c/

√
εs , where εs = n2.

λeff

2Rπ
= 13.74− 0.12[ε∞ + εs141.04]/εs

− 2

π
+

λ

λp
0.12
√
ε∞ + εs141.04/εs

[Lukas Novotny, Effective Wavelength Scaling for Optical
Antennas, Phys. Rev. Lett. 98, 266802 (2007).]
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Kinetic Modelling of the Nanorod

Nanorod inside a PIC simulation box
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Considerations for the
simulation box:
SCB = 530× 530nm2 =
2.81× 10−9cm2 and length of
LCB = 795nm

beam crosses the box in
T = 795nm/c = 2.65fs

Nanorod size: 25 nm diameter
with 130 nm length

Pulse length: 40×λ/c = 106 fs
Intensity: 4× 1015 W/cm2

[Papp I, Bravina L, Csete M,
Kumari A, et al. Kinetic model
evaluation of the resilience of
plasmonic nanoantennas for
laser-induced fusion. PRX
Energy (2022)]

34 / 48



Introduction
Modelling the Nanorod

Conclusions and the future

FEM approach
PIC approach

Kinetic Modelling of the Nanorod

Evolution of the nanoantenna

Number density of electrons in the middle of a nanorod of size 25x130 nm at
different times. The nanorod is orthogonal to the beam direction, x .
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Kinetic Modelling of the Nanorod in Vacuum
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- Evolution of the E field’s y component from 42.4 till 45.7 fs, around a
nanorod of 25x130 nm.
- The direction of the E field at the two ends of the nanorod does not change.

36 / 48



Introduction
Modelling the Nanorod

Conclusions and the future

FEM approach
PIC approach

In Vacuum

0 20 40 60 80 100 120
t(fs)

0

5

10

15

20

25

30

E(
nJ

)

eff/2

2 eff/3
eff/3

Box Particle Energy
Box Field E W nanorod
Box Field E W/O nanorod

energy in the box without nanorod antenna 3×10−8 J (black line)
nanorod absorbs EM energy reducing it to 2.3×10−8 J (red line)
deposited energy in the nanorod (green line)
results in light absorption cross section highest
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In UDMA-TEGDMA copolymer comparison

(a) (b) (c)

Optical response of the gold nanorod with different numerical methods
and lengths, L = λeff /2, λeff /3and2λeff eff /3. (a) PIC, (b) FEM and (c)
FEM with normalized values to unit antenna length.
[I. Papp, L. Bravina, M. Csete, et al.(NAPLIFE Collaboration), Kinetic
model of resonant nanoantennas in polymer for laser induced fusion,
Frontiers in Physics, 11, 1116023 (2023).]
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In UDMA-TEGDMA copolymer comparison

Time dependence of the
total polarity directed
momentum of the
conducting electrons in the
nanorod.

[I. Papp, L. Bravina, M.
Csete, et al.(NAPLIFE
Collaboration), Kinetic
model of resonant
nanoantennas in polymer for
laser induced fusion,
Frontiers in Physics, 11,
1116023 (2023).]
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In UDMA-TEGDMA copolymer comparison

(a) (b)

Electrons leaving the nanorod. Figure (a) indicates the maximum
momentum in time, Figure (b) shows the distribution of electrons at
different momentum values.
[I. Papp, L. Bravina, et al. Frontiers in Physics, 11, 1116023 (2023).]
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Capping in the experiment

The gold nanorods in the polymer matrix are coated with dodecanethiol (DDT)
capping. CH3(CH2)11SH
[Bonyár A, et al.The Effect of Fem- tosecond Laser Irradiation and Plasmon
Field on the Degree of Conversion of a UDMA-TEGDMA Copoly- mer
Nanocomposite Doped with Gold Nanorods. Inter- national Journal of
Molecular Sciences 23(21), 13575 (2022).]
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Considerations for the
simulation box:
SCB = 530× 530nm2 =
2.81× 10−9cm2 and length of
LCB = 795nm

beam crosses the box in
T = 795nm/c = 2.65fs

Nanorod size: 25 nm diameter
with 85 nm length

Pulse length: 40×λ/c = 106 fs
Intensity: 4× 1015 W/cm2
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Ionisable surrounding
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To
ta
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I = 4e15 W/cm2

electrons
protons
H-electrons

We consider a laser pulse of intensity I = 4 · 1015W/cm2 and
I = 4 · 1017W/cm2 and duration of 106fs.
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Ionisable surrounding

0 25 50 75 100 125
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H-electrons

We consider a laser pulse of intensity I = 4 · 1015W/cm2 and
I = 4 · 1017W/cm2 and duration of 106fs.
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Ionisable surrounding

(a) (b) (c)

The number of electrons and protons when they leave the nano antennas
or their surrounding at intensity I = 4× 1015 W/cm2.
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Ionisable surrounding

(a) (b) (c)

The number of electrons and protons when they leave the nano antennas
or their surrounding at intensity I = 4× 1017 W/cm2.
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Conclusions, Looking forward

The model is in good agreement with currently available widely accepted
methods

Quantitative differences mainly come at different resonant lengths

The model is less idealized than before

Ionization in the medium is now included, nuclear reactions are on the way

Target pre-compression in the next step can be estimated
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