Particle-in-cell simulations for Nanoplasmonic Laser Induced Fusion Experiments

István Papp, Larissa Bravina, Mária Csete, Archana Kumari, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Péter Rácz, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó (part of NAPLIFE Collaboration)

イロト イポト イヨト イヨト

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Nanoplasmonic Laser Inertial Fusion Experiment

Kőszeg, September 14, 2019 - Int. Workshop on Collectivity First meeting on the NAPLIFE project (12 people)

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

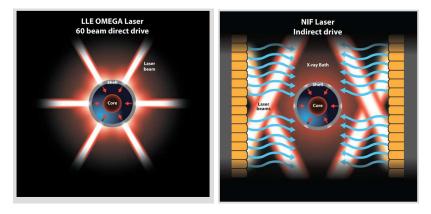
Nanoplasmonic Laser Inertial Fusion Experiment

Workshop on Laser Fusion

a spin-off from heavy-ion collisions ICNFP 2022

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Conventional Thermonuclear Fusion


- Fusion does not happen spontaneously on Earth
- Total fusion energy $E_f = \frac{1}{4}n^2\tau\epsilon\langle v\sigma\rangle$
- ηE_f is the usable energy
- The loss is $(1 \eta)(E_0 + E_b)$
- $E_0 = 3nkT$, $E_b = bn^2 \tau \sqrt{T}$ (thermal bremsstralung)
- Giving the gain factor: $Q = \frac{\eta \epsilon n \tau v \sigma}{4(1-\eta)(3kT+bn\tau\sqrt{T})}$
- Q must be Q > 1 for energy production
- This also means $n\tau > \frac{3kT(1-\eta)}{\frac{1}{4}\epsilon\eta\langle v\sigma\rangle b(1-\eta)\sqrt{T}} \rightarrow LC$
- Fulfilling the Lawson criterion
 - Magnetically confined plasmas: increase confinement time
 - Inertial confinement fusion: increase density of fusion plasma

イロト イヨト イヨト イヨト

3

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Direct vs Indirect drive

イロト イヨト イヨト イヨト 三日

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Rayleigh-Taylor instabilities

Workshop on Laser Fusion a spin-off from heavy-ion collisions ICNFP 2022

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

RFD

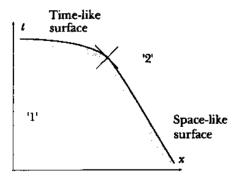
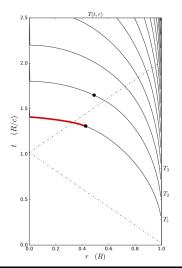



Figure 5.10: Smooth change from spacelike to timelike detonation [Csernai, L.P. (1987). Detonation on a time-like front for relativistic systems. Zh. Eksp. Teor. Fiz. 92, 379-386.]

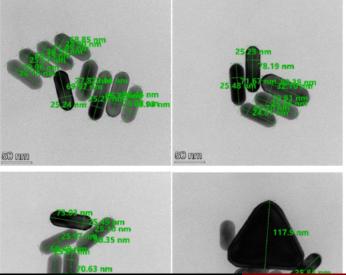
Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Constant absorptivity

[L.P. Csernai & D.D. Strottman, Laser and Particle Beams 33, 279 (2015)]

 $\alpha_{k_{middle}} = \alpha_{k_{edge}}$

Simultaneous volume ignition is only up to 12%

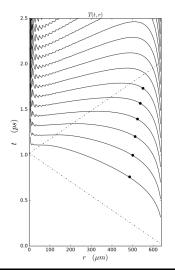

イロト イヨト イヨト イヨト

3

Workshop on Laser Fusion a spin-off from heavy-ion collisions ICNFP 2022

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Nanoplasmonic Laser Fusion Research Laboratory


Workshop on Laser Fusion

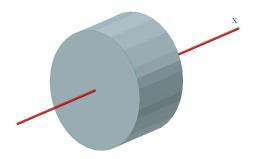
Transmission Electronmicroscopy photos of 75x25 nm gold nano-rod antennas [Judit Kámán, A. Bonyár et al. (NAPLIFE Collab.)., Gold nanorods 10th ICNFP 2021, Kolymbari]

a spin-off from heavy-ion collisions ICNFP 2022

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Changing absorptivity

[Csernai, L.P., Kroo, N. and Papp, I. (2017). Procedure to improve the stability and efficiency of laser-fusion by nano-plasmonics method. Patent P1700278/3 of the Hungarian Intellectual Property Office.]

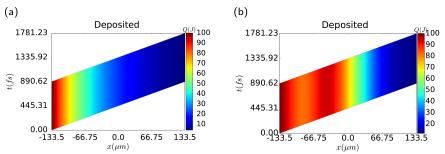

 $\alpha_{k_{middle}} \approx 4 \times \alpha_{k_{edge}}$

Simultaneous volume ignition is up to 73%

イロト イヨト イヨト イヨト

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Flat target


Schematic view of the cylindrical, flat target of radius, R, and thickness, h. $V = 2\pi R^3$, $R = \sqrt[3]{V/(2\pi)}$, $h = \sqrt[3]{4V/\pi}$.

[L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H. Stöcker & N. Kroó, Radiation- Dominated Implosion with Flat Target, *Physics and Wave Phenomena*, **28** (3) 187-199 (2020)]

Workshop on Laser Fusion a spin-off from heavy-ion collisions ICNFP 2022

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Varying absorptivity

Deposited energy per unit time in the space-time plane across the depth, h, of the flat target. (a) without nano-shells (b) with nano-shells To increase central absorption we used the following distribution:

$$\alpha_{ns}(s) = \alpha_{ns}^{C} + \alpha_{ns}(0) \cdot \exp\left[\frac{4x^2}{L^2 - x^2}\right]$$

イロト イポト イヨト イヨト

3

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Particle In Cell methods

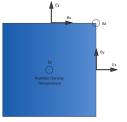


Figure 2: The Yee grid in 2D

[F.H. Harlow (1955). A Machine Calculation Method for Hydrodynamic Problems. Los Alamos Scientific Laboratory report LAMS-1956]

[T.D. Arber et al 2015 Plasma Phys. Control. Fusion 57 113001]

A **super-particle** (marker-particle) is a computational particle that represents many real particles.

Particle **mover** or **pusher** algorithm as standard **Boris algorithm**.

Finite-difference time-domain method for solving the time evolution of Maxwell's equations.

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

FDTD in EPOCH

•
$$\boldsymbol{E}_{n+\frac{1}{2}} = \boldsymbol{E}_n + \frac{\Delta t}{2} \left(c^2 \nabla \times \boldsymbol{B}_n - \frac{\boldsymbol{j}_n}{\epsilon_0} \right)$$

• $\boldsymbol{B}_{n+\frac{1}{2}} = \boldsymbol{B}_n - \frac{\Delta t}{2} \left(\nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$
• Call particle pusher which calculates \boldsymbol{j}_{n+1}
• $\boldsymbol{B}_{n+1} = \boldsymbol{B}_{n+\frac{1}{2}} - \frac{\Delta t}{2} \left(\nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$
• $\boldsymbol{E}_{n+1} = \boldsymbol{E}_{n+\frac{1}{2}} + \frac{\Delta t}{2} \left(c^2 \nabla \times \boldsymbol{B}_{n+1} - \frac{\boldsymbol{j}_{n+1}}{\epsilon_0} \right)$

・ロト ・四ト ・ヨト ・ヨト

E

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Particle pusher

• Solves the relativistic equation of motion under the Lorentz force for each marker-particle

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n + q\Delta t \left[\boldsymbol{E}_{n+\frac{1}{2}} \left(\boldsymbol{x}_{n+\frac{1}{2}} \right) + \boldsymbol{v}_{n+\frac{1}{2}} \times \boldsymbol{B}_{n+\frac{1}{2}} \left(\boldsymbol{x}_{n+\frac{1}{2}} \right) \right]$$

p is the particle momentum **q** is the particle's charge **v** is the velocity. **p** = $\gamma m \mathbf{v}$, where *m* is the rest mass $\gamma = \left[(\mathbf{p}/mc)^2 + 1 \right]^{1/2}$

 Villasenor and Buneman current deposition scheme [Villasenor J & Buneman O 1992 Comput. Phys. Commun. 69 306], always satisfied: ∇ · E = ρ/ε₀, where ρ is the charge density.

Э

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general

Particle shape

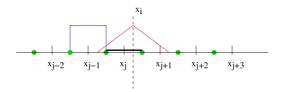


Figure 3: Second order particle shape function

First order approximations are considered

$$F_{part} = \frac{1}{2}F_{i-1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2 + \frac{1}{2}F_i\left(\frac{3}{4} - \frac{(x_i - X)^2}{\Delta x^2}\right)^2 + \frac{1}{2}F_{i+1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2$$

[EPOCH 4.0 dev manual]

・ロト ・回ト ・ヨト ・ヨト

E

Approach comparisons PIC approach

Nanorod

[W. J. Ding, et al., Particle simulation of plasmons Nanophotonics, vol. 9, no. 10, pp. 3303-3313 (2020)]

イロト イヨト イヨト イヨト

E

Approach comparisons PIC approach

Nanorod

Typical Field solver: $\epsilon(\omega) = 1 - \frac{\omega_p^2}{(\omega^2 + i\gamma\omega)}$ where ω_p is the plasma frequency: $\sqrt{\frac{n_e e^2}{m'\epsilon_0}}$ γ is the damping factor or collision frequency: $\gamma = \frac{1}{\tau}$ and τ is the average time between collisions Particle simulation:

$$\frac{\partial \boldsymbol{E}}{\partial t} = \frac{1}{\mu_0 \epsilon_0} \nabla \times \boldsymbol{B} - \frac{\boldsymbol{J}}{\epsilon_0}, \ \frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times \boldsymbol{E}$$

 $\gamma_i m_i \boldsymbol{v}_i = q_i (\boldsymbol{E}_i + \boldsymbol{v}_i \times \boldsymbol{B}_i), \gamma_i$ is the relativistic factor

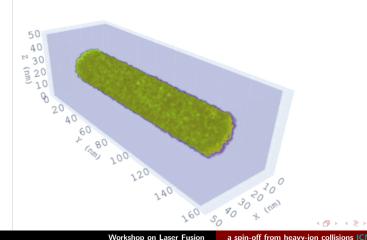
イロト イポト イヨト イヨト

Approach comparisons PIC approach

Metal Nanoparticles as Plasmas

The conduction band electrons in metals behave as strongly coupled plasmas. For golden nanorods of 25nm diameter in vacuum this gives an effective wavelength of $\lambda_{eff} = 266$ nm

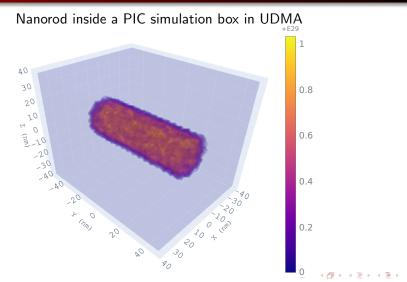
$$rac{\lambda_{ ext{eff}}}{2R\pi}=13.74-0.12[arepsilon_{\infty}+141.04]-rac{2}{\pi}+rac{\lambda}{\lambda_{
ho}}0.12\sqrt{arepsilon_{\infty}+141.04}$$

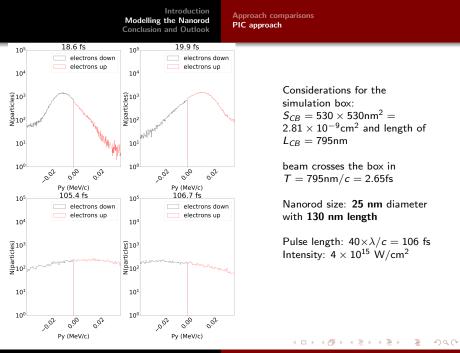

[Lukas Novotny, Effective Wavelength Scaling for Optical Antennas, Phys. Rev. Lett. **98**, 266802 (2007).]

イロト イポト イヨト イヨト

Approach comparisons **PIC** approach

Kinetic Modelling of the Nanorod

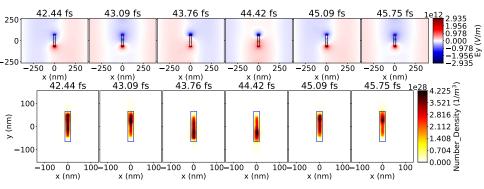

Nanorod inside a PIC simulation box in vacuum



æ

Approach comparisons PIC approach

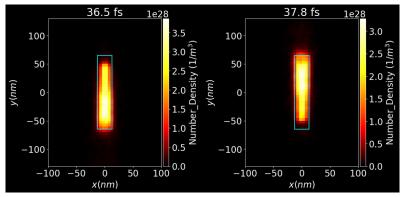
Kinetic Modelling of the Nanorod



Workshop on Laser Fusion

Approach comparisons PIC approach

Kinetic Modelling of the Nanorod

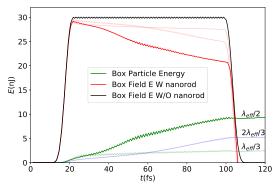

- Evolution of the E field's y component from 42.4 till 45.7 fs, around a nanorod of 25×130 nm.

- The direction of the E field at the two ends of the nanorod does not change.

Approach comparisons PIC approach

Kinetic Modelling of the Nanorod

Evolution of the nanoantenna


Number density of electrons in the middle of a nanorod of size 25×130 nm at different times. The nanorod is orthogonal to the beam direction, *x*.

イロト イヨト イヨト イヨト

E

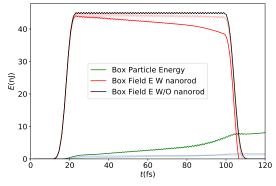
Approach comparisons PIC approach

In vacuum

energy in the box without nanorod antenna 3×10^{-8} J (black line) nanorod absorbs EM energy reducing it to 2.3×10^{-8} J (red line) deposited energy in the nanorod (green line) results in light absorption cross section highest

Approach comparisons PIC approach

Comparison with other methods (Csernai, Csete et al.)

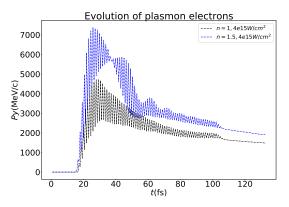


Good qualitative agreement between FEM and EPOCH/PIC methods Quantitative difference:

Workshop on Laser Fusion

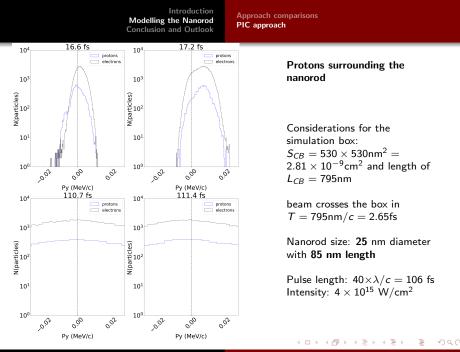
Approach comparisons PIC approach

In UDMA


deposited energy in the nanorod (green line)

イロト イヨト イヨト イヨト

E


Approach comparisons PIC approach

In UDMA and vacuum

accumulated momentum of conduction electrons in **vacuum** (blue) and in **UDMA** (black) with their corresponding resonant length

イロト イポト イヨト イヨト

Conclusion and Outlook

Conclusion and Outlook

- Our results agree with the those of Mária Csete in vacuum
- Quantitative differences mainly come at different lengths from resonance
- Levitation effect comes only in vacuum, needs further investigation
- Next step is estimating the target pre-compression

イロト イポト イヨト イヨト

3