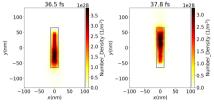


Particle Simulations for Nanoplasmonic Laser Induced Fusion Experiment

lstván Papp ^{1,2}, Larissa Bravina ⁴, Mária Csete ⁵, Archana Kumari ^{1,2}, Igor N. Mishustin ^{6,7}, Dénes Molnár ⁸, Anton Motornenko ⁶, Péter Rácz ^{1,2}, Leonid M. Satarov ⁶, Horst Stöcker ^{6,9,10}, Daniel D. Strottman ¹¹, András Szenes ⁵, Dávid Vass ⁵, Tamás S. Biró ^{1,2}, László P. Csernai ^{1,2,3,6}, Norbert Kroó ^{1,2,12} (part of NAPLIFE Collaboration)


Simultaneous volume ignition happens only up to 12% in an irradiated target NAno-Plasmonic Laser Induced Fusion Experiment was proposed to overcome instabilities and increase light absorption in the target. Resonant gold nanoantennas can be used to enhance absorption. [L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H. Stcker & N. Kroó, Radiation- Dominated Implosion with Flat Target, *Physics and Wave Phenomena*, **28** (3) 187-199 (2020)]

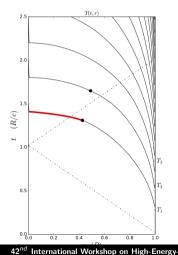
Classically, when simulating gold nanoparticles, electromagnetic responses are described by bulk permitivity and Maxwell's equations are solved with Finite Difference Time Domain methods, without focusing on motion of electrons.

$$\epsilon(\omega) = 1 - \frac{\omega_p^2}{(\omega^2 + i\gamma\omega)}$$
 where ω_p is the plasma frequency,
 γ is the damping factor or collision frequency.

On these scales conduction electrons behave like strongly coupled **plasma**. [Lukas Novotny, Effective Wavelength Scaling for Optical Antennas, Phys. Rev. Lett. **98**, 266802 (2007).]

We simulated nanoantennas with colliding electrons around heavy gold ions using **Partcle-In-Cell** method (EPOCH). [T.D. Arber et al 2015 Plasma Phys. Control. Fusion 57 113001]

Result in vacuum for 25×130 nm nanorod orthogonal to the beam direction, *x*. The electro-magnetic field drives the conduction electrons into fluctuations.


The nanorod here has a light absorption cross section **66.5** times bigger than its geometrical cross section.

The model is **idealized**, however, it shows **qualitative potential** for future use in plasma simulations.

42nd International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

From Relativistic Fluid Dynamics

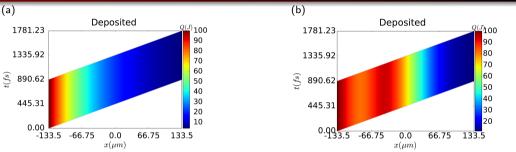
[L.P. Csernai & D.D. Strottman, Laser and Particle Beams 33, 279 (2015)]

 $\alpha_{k_{middle}} = \alpha_{k_{edge}}$

Simultaneous volume ignition is only up to 12%

イロト イポト イヨト イヨト

з.


See presentation of Lászlo P. Csernai titled: Development in Nano Fusion on February 3, 18:00 PM, Session 12

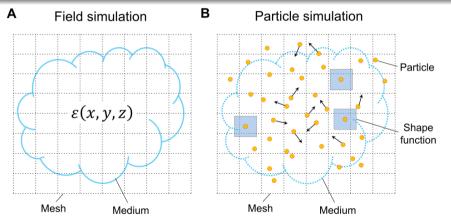
International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

э

Varying absorptivity

Deposited energy per unit time in the space-time plane across the depth, h, of the flat target. (a) constant absorptivity (b) changing absorptivity


To increase central absorption we used the following distribution:

$$\alpha_{ns}(s) = \alpha_{ns}^{C} + \alpha_{ns}(0) \cdot \exp\left[4 \times \frac{\left(\frac{s}{100}\right)^{2}}{\left(\frac{s}{100} - 1\right)\left(\frac{s}{100} + 1\right)}\right]$$

Radiation Dominated Implosion Absorptivity by nano-technology **PIC methods in general** Approach comparisons

3

Nanorod

[W. J. Ding, et al., Particle simulation of plasmons Nanophotonics, vol. 9, no. 10, pp. 3303-3313 (2020)]

42nd International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

Radiation Dominated Implosion Absorptivity by nano-technology **PIC methods in general** Approach comparisons

A D > A B > A B > A B >

3

Nanorod

Field solver: $\epsilon(\omega) = 1 - \frac{\omega_p^2}{(\omega^2 + i\gamma\omega)}$ where ω_p is the plasma frequency: $\sqrt{\frac{n_e e^2}{m'\epsilon_0}}$ γ is the damping factor or collision frequency: $\gamma = \frac{1}{\tau}$ and τ is the average time between collisions Particle simulation:

$$rac{\partial oldsymbol{E}}{\partial t} = rac{1}{\mu_0\epsilon_0}
abla imes oldsymbol{B} - rac{oldsymbol{J}}{\epsilon_0}, \; rac{\partial oldsymbol{B}}{\partial t} = -
abla imes oldsymbol{E}$$

 $\gamma_i m_i \boldsymbol{v}_i = q_i (\boldsymbol{E}_i + \boldsymbol{v}_i \times \boldsymbol{B}_i), \ \gamma_i$ is the relativistic factor

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

イロト 不得 とうき とうせいしゅう

Metal Nanoparticles as Plasmas

The conduction band electrons in metals behave as strongly coupled plasmas. For golden nanorods of 25nm diameter in vacuum this gives an effective wavelength of $\lambda_{eff} = 266$ nm

$$rac{\lambda_{ eff}}{2R\pi}=13.74-0.12[arepsilon_{\infty}+141.04]-rac{2}{\pi}+rac{\lambda}{\lambda_{
ho}}0.12\sqrt{arepsilon_{\infty}+141.04}$$

[Lukas Novotny, Effective Wavelength Scaling for Optical Antennas, Phys. Rev. Lett. **98**, 266802 (2007).]

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

Particle In Cell methods

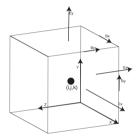


Figure 1. Yee staggered grid used for the Maxwell solver in *EPOCH*.

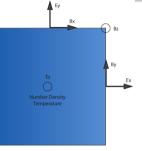


Figure 2: The Yee grid in 2D

[F.H. Harlow (1955). A Machine Calculation Method for Hydrodynamic Problems. Los Alamos Scientific Laboratory report LAMS-1956]

[T.D. Arber et al 2015 Plasma Phys. Control. Fusion 57 113001]

A **super-particle** (marker-particle) is a computational particle that represents many real particles.

Particle **mover** or **pusher** algorithm as standard **Boris algorithm**.

Finite-difference time-domain method for solving the time evolution of

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

3

FDTD in EPOCH

•
$$\boldsymbol{E}_{n+\frac{1}{2}} = \boldsymbol{E}_n + \frac{\Delta t}{2} \left(c^2 \nabla \times \boldsymbol{B}_n - \frac{\boldsymbol{j}_n}{\epsilon_0} \right)$$

• $\boldsymbol{B}_{n+\frac{1}{2}} = \boldsymbol{B}_n - \frac{\Delta t}{2} \left(\nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$

• Call particle pusher which calculates
$$j_{n+1}$$

•
$$\boldsymbol{B}_{n+1} = \boldsymbol{B}_{n+\frac{1}{2}} - \frac{\Delta t}{2} \left(\nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$$

• $\boldsymbol{E}_{n+1} = \boldsymbol{E}_{n+\frac{1}{2}} + \frac{\Delta t}{2} \left(c^2 \nabla \times \boldsymbol{B}_{n+1} - \frac{\boldsymbol{j}_{n+1}}{\epsilon_0} \right)$

Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

イロト 人間 ト イヨト イヨト

3

Particle pusher

• Solves the relativistic equation of motion under the Lorentz force for each marker-particle

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n + q\Delta t \left[\boldsymbol{E}_{n+\frac{1}{2}} \left(\boldsymbol{x}_{n+\frac{1}{2}} \right) + \boldsymbol{v}_{n+\frac{1}{2}} \times \boldsymbol{B}_{n+\frac{1}{2}} \left(\boldsymbol{x}_{n+\frac{1}{2}} \right) \right]$$

p is the particle momentum q is the particle's charge v is the velocity.

- $m{p}=\gamma mm{v}$, where m is the rest mass $\gamma=\left[(m{p}/mc)^2+1
 ight]^{1/2}$
- Villasenor and Buneman current deposition scheme [Villasenor J & Buneman O 1992 Comput. Phys. Commun. 69 306], always satisfied: ∇ · *E* = ρ/ε₀, where ρ is the charge density.

Introduction

Modelling the Nanorod Conclusions and the future Radiation Dominated Implosion Absorptivity by nano-technology PIC methods in general Approach comparisons

A D > A B > A B > A B >

з.

Particle shape

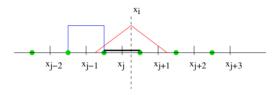


Figure 3: Second order particle shape function

First order approximations are considered

$$F_{\textit{part}} = \frac{1}{2}F_{i-1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2 + \frac{1}{2}F_i\left(\frac{3}{4} - \frac{(x_i - X)^2}{\Delta x^2}\right)^2 + \frac{1}{2}F_{i+1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2$$

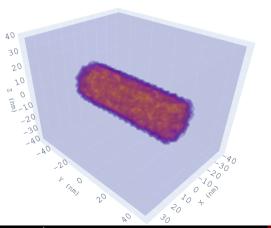
[EPOCH 4.0 dev manual]

42nd International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

PIC approach

+E29

0.8


0.6

0.4

0.2

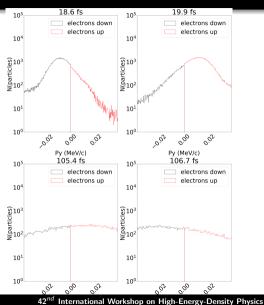
Kinetic Modelling of the Nanorod

Nanorod inside a PIC simulation box

42nd International Workshop on High-Energy-Density Physics

with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

イロト イヨト イヨト イヨト


3

Introduction

Modelling the Nanorod

PIC approach

Conclusions and the future

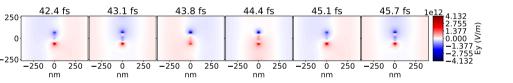
Considerations for the simulation box: $S_{CB} = 530 \times 530 \text{nm}^2 = 2.81 \times 10^{-9} \text{cm}^2$ and length of $L_{CB} = 795 \text{nm}$

beam crosses the box in T = 795 nm/c = 2.65 fs

Nanorod size: 25 nm diameter with 75 nm length

イロト イポト イヨト イヨト

3


Pulse length: $40 \times \lambda/c = 106$ fs Intensity: 4×10^{15} W/cm²

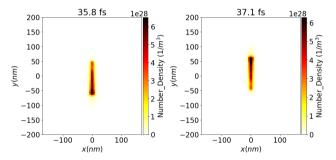
with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

PIC approach

Kinetic Modelling of the Nanorod

Evolution of the fields

- Evolution of the E field's y component from 42.4 till 45.7 fs, around a nanorod of 25×130 nm.

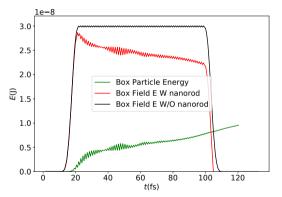

- The direction of the E field at the two ends of the nanorod does not change.

э

PIC approach

Kinetic Modelling of the Nanorod

Evolution of the nanoantenna


Number density of electrons in the middle of a nanorod of size 25×130 nm at different times. The nanorod is orthogonal to the beam direction, x.

э

PIC approach

ъ

Kinetic Modelling of the Nanorod

energy in the box without nanorod antenna 3×10^{-8} J (black line) nanorod absorbs EM energy reducing it to 2.3×10^{-8} J (red line) deposited energy in the nanorod (green line) to ultrational Workshop on High-Energy Density Physics with Intense Ion and Laser Beams, Hischerge, 2 February 2022

Conclusions

Conclusions, Looking forward

- The model returns the analytical calculations regarding the absorption cross section
- The model is highly idealized
- Next step is embedding nanorods in non-vacuum medium
- Fully dedicated software for the project is required
- Next step is estimating the target pre-compression

イロト 人間 トイヨト イヨト

3

Conclusions

Thank you!

42nd International Workshop on High-Energy-Density Physics with Intense Ion and Laser Beams, Hirschegg, 2 February 2022

・ロト ・四ト ・ヨト ・ヨト

3