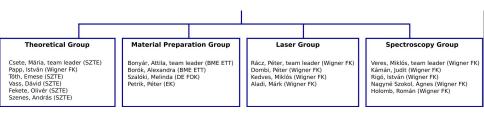
# Particle-in-cell simulations for Nanoplasmonic Laser Induced Fusion Experiments


István Papp, Larissa Bravina, Mária Csete, Igor N. Mishustin, Dénes Molnár, Anton Motornenko, Leonid M. Satarov, Horst Stöcker, Daniel D. Strottman, András Szenes, Dávid Vass, Tamás S. Biró, László P. Csernai, Norbert Kroó



イロト イポト イヨト イヨト

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

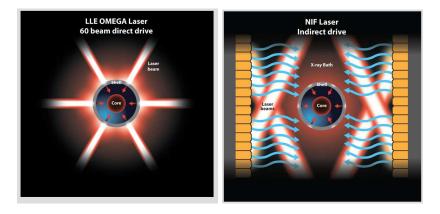
#### Nanoplasmonic Laser Fusion Research Laboratory



イロト イヨト イヨト イヨト

Э

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

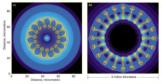

#### Thermo-nuclear Fusion

- Fusion does not happen spontaneously on Earth
- Total fusion energy  $E_f = \frac{1}{4} n^2 \tau \epsilon \langle v \sigma \rangle$
- $\eta E_f$  is the usable energy
- The loss is  $(1 \eta)(E_0 + E_b)$
- $E_0 = 3nkT$ ,  $E_b = bn^2 \tau \sqrt{T}$  (thermal bremsstralung)
- Giving the gain factor:  $Q = \frac{\eta \epsilon n \tau v \sigma}{4(1-\eta)(3kT+bn\tau\sqrt{T})}$
- Q must be Q > 1 for energy production
- This also means  $n\tau > \frac{3kT(1-\eta)}{\frac{1}{4}\epsilon\eta\langle v\sigma\rangle b(1-\eta)\sqrt{T}} \rightarrow LC$
- Fulfilling the Lawson criterion
  - Magnetically confined plasmas: increase confinement time
  - Inertial confinement fusion: increase density of fusion plasma

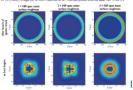
・ロト ・回ト ・ヨト ・

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

#### Direct vs Indirect drive







<ロ> <四> <四> <四> <三</td>

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

#### **Rayleigh-Taylor** instabilities



#### Striking similarities exist between hydrodynamic instabilities in (a) inertial confinement fusion capsule implosions and (b) core-collapse supernova explosions. [Image (a) is from Sakagarri and Nahihara, Physics of Fluds B2, 2715 (1990): Image (b) is from Hachisu et al., Astrophysical Journal 368, L27 (1991)].



# Energy must be delivered as sysmmetric as possible!

Different levels of corrugation of the shell surfaces :

Left: same roughness of inner and outer surface as specified for the NIF target Center: outer surface roughness is twice the NIF level

**Right:** DT inner surface roughness three times larger than NIF specifications

[S. Atzeni et al., Nucl. Fusion 54, 054008 (2014).]

25

イロト イポト イヨト イヨト

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

#### RFD

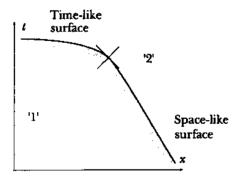
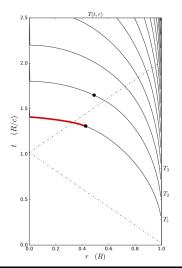




Figure 5.10: Smooth change from spacelike to timelike detonation [Csernai, L.P. (1987). Detonation on a time-like front for relativistic systems. Zh. Eksp. Teor. Fiz. 92, 379-386.]

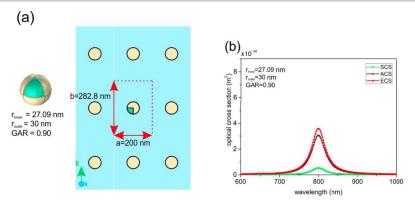
Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

#### Constant absorptivity



[L.P. Csernai & D.D. Strottman, Laser and Particle Beams 33, 279 (2015)]

 $\alpha_{k_{middle}} = \alpha_{k_{edge}}$ 


Simultaneous volume ignition is only up to 12%

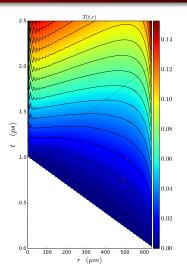
・ロト ・回ト ・ヨト ・ヨト

3

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

## Doping with gold




(a) Left: Single core-shell nano-sphere. Right: Rectangular lattice of nano-spheres in a transverse layer of the target.

(b) Optical cross-section of an individual core-shell nano-sphere optimized to absorb light at 800 nm wavelength and optical response of the same core-shell nano-spheres composing a rectangular lattice.  $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = 2$ 

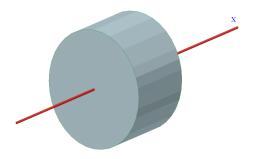
Workshop on Laser Fusion a spin-off from heavy-ion collisions ICNFP 2021

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

### Changing absorptivity



[Csernai, L.P., Kroo, N. and Papp, I. (2017). Procedure to improve the stability and efficiency of laser-fusion by nano-plasmonics method. Patent P1700278/3 of the Hungarian Intellectual Property Office.]


 $\alpha_{k_{middle}} \approx 4 \times \alpha_{k_{edge}}$ 

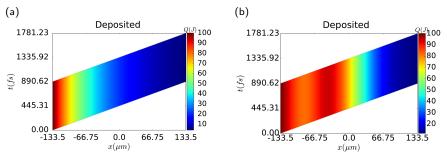
Simultaneous volume ignition is up to 73%

・ロト ・回ト ・ヨト ・ヨト

Simulations and software Modelling the Nanorod Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

### Flat target




Schematic view of the cylindrical, flat target of radius, *R*, and thickness, *h*.  $V = 2\pi R^3$ ,  $R = \sqrt[3]{V/(2\pi)}$ ,  $h = \sqrt[3]{4V/\pi}$ .

[L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H. Stcker & N. Kroó, Radiation- Dominated Implosion with Flat Target, *Physics and Wave Phenomena*, **28** (3) 187-199 (2020)]

Э

Inertial Confinement Fusion Radiation Dominated Implosion Absorptivity by nano-technology

#### Varying absorptivity



**Deposited energy** per unit time in the space-time plane across the depth, h, of the flat target. (a) without nano-shells (b) with nano-shells To increase central absorption we used the following distribution:

$$\alpha_{ns}(s) = \alpha_{ns}^{C} + \alpha_{ns}(0) \cdot \exp\left[4 \times \frac{\left(\frac{s}{100}\right)^2}{\left(\frac{s}{100} - 1\right)\left(\frac{s}{100} + 1\right)}\right]$$

イロト イボト イヨト イヨ

3

PIC methods in general Laser Wake Field Collider

#### Particle In Cell methods





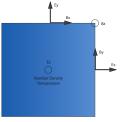



Figure 2: The Yee grid in 2D

[F.H. Harlow (1955). A Machine Calculation Method for Hydrodynamic Problems. Los Alamos Scientific Laboratory report LAMS-1956]

[T.D. Arber et al 2015 Plasma Phys. Control. Fusion 57 113001]

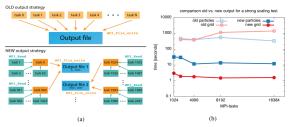
A **super-particle** (marker-particle) is a computational particle that represents many real particles.

Particle **mover** or **pusher** algorithm as standard **Boris algorithm**.

Finite-difference time-domain method for solving the time evolution of Maxwell's equations.

PIC methods in general Laser Wake Field Collider

#### Available software


| Computational application        | Web site | License            | Availability                                                                                                                | Canonical Reference                 |
|----------------------------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| SHARP                            | [17]     | Proprietary        |                                                                                                                             | doi:10.3847/1538-4357/aa6d13d       |
| ALaDyn                           | [18]     | GPLv3+             | Open Repo: <sup>[19]</sup>                                                                                                  | doi:10.5281/zenodo.49553#           |
| EPOCH                            | [20]     | GPL                | Open to academic users but signup required :[21]                                                                            | doi:10.1088/0741-3335/57/11/113001@ |
| FBPIC                            | [55]     | 3-Clause-BSD-LBNL  | Open Repo: <sup>[23]</sup>                                                                                                  | doi:10.1016/j.cpc.2016.02.007       |
| LSP                              | [24]     | Proprietary        | Available from ATK                                                                                                          | doi:10.1016/S0168-9002(01)00024-9t9 |
| MAGIC                            | [25]     | Proprietary        | Available from ATK                                                                                                          | doi:10.1016/0010-4655(95)00010-D 🖗  |
| OSIRIS                           | [26]     | Proprietary        | Closed (Collaborators with MoU)                                                                                             | doi:10.1007/3-540-47789-6_36        |
| PICCANTE                         | [27]     | GPLv3+             | Open Repo: <sup>[28]</sup>                                                                                                  | doi:10.5281/zenodo.48703            |
| PICLas                           | [29]     | Proprietary        | Available from Institute of Space Systems P and Institute of Aerodynamics and Gas Dynamics P at the University of Stuttgart | doi:10.1016/j.crme.2014.07.005@     |
| PIConGPU                         | [30]     | GPLv3+             | Open Repo: <sup>[31]</sup>                                                                                                  | doi:10.1145/2503210.2504564@        |
| SMILEI                           | [32]     | CeCILL-B           | Open Repo: <sup>[33]</sup>                                                                                                  | doi:10.1016/j.cpc.2017.09.024t9     |
| iPIC3D                           | [34]     | Apache License 2.0 | Open Repo: <sup>[35]</sup>                                                                                                  | doi:10.1016/j.matcom.2009.08.038    |
| The Virtual Laser Plasma Library | [36]     | Proprietary        | Unknown                                                                                                                     | doi:10.1017/S0022377899007515       |
| VizGrain                         | [37]     | Proprietary        | Commercially available from Esgee Technologies Inc.                                                                         |                                     |
| VPIC                             | [38]     | 3-Clause-BSD       | Open Repo: <sup>[39]</sup>                                                                                                  | doi:10.1063/1.28401331₽             |
| VSim (Vorpal)                    | [40]     | Proprietary        | Available from Tech-X Corporation                                                                                           | doi:10.1016/j.jcp.2003.11.00449     |
| Warp                             | [41]     | 3-Clause-BSD-LBNL  | Open Repo: <sup>[42]</sup>                                                                                                  | doi:10.1063/1.860024t₽              |
| WarpX                            | [43]     | 3-Clause-BSD-LBNL  | Open Repo: <sup>[44]</sup>                                                                                                  | doi:10.1016/j.nima.2018.01.035      |
| ZPIC                             | [45]     | AGPLv3+            | Open Repo: <sup>[46]</sup>                                                                                                  |                                     |

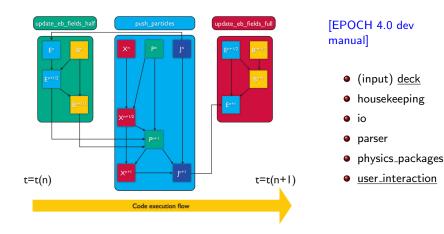
・ロト ・回 ト ・ヨト ・ヨト

E

PIC methods in general Laser Wake Field Collider

#### Piccante




(a) Old and new strategies. G = 64 group of tasks and F = N/128 master tasks. (b) Time spent for **writing particle positions** blue, time spent for **grid based outputs** (EM fields, densities) marked with **red**.

[A. Sgattoni, L. Fedeli, S. Sinigardi, A. Marocchino, A. Macchi, V. Weinberg, A. Karmakar; https://arxiv.org/pdf/1503.02464.pdf]

イロト イポト イヨト イヨト

PIC methods in general Laser Wake Field Collider

# General layout of the EPOCH code



イロト イヨト イヨト イヨト

E

PIC methods in general Laser Wake Field Collider

#### FDTD in EPOCH

• 
$$\boldsymbol{E}_{n+\frac{1}{2}} = \boldsymbol{E}_{n} + \frac{\Delta t}{2} \left( c^{2} \nabla \times \boldsymbol{B}_{n} - \frac{\boldsymbol{j}_{n}}{\epsilon_{0}} \right)$$
  
•  $\boldsymbol{B}_{n+\frac{1}{2}} = \boldsymbol{B}_{n} - \frac{\Delta t}{2} \left( \nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$   
• Call particle pusher which calculates  $\boldsymbol{j}_{n+1}$   
•  $\boldsymbol{B}_{n+1} = \boldsymbol{B}_{n+\frac{1}{2}} - \frac{\Delta t}{2} \left( \nabla \times \boldsymbol{E}_{n+\frac{1}{2}} \right)$   
•  $\boldsymbol{E}_{n+1} = \boldsymbol{E}_{n+\frac{1}{2}} + \frac{\Delta t}{2} \left( c^{2} \nabla \times \boldsymbol{B}_{n+1} - \frac{\boldsymbol{j}_{n+1}}{\epsilon_{0}} \right)$ 

ヘロト 人間 とくほとくほとう

E

PIC methods in general Laser Wake Field Collider

#### Particle pusher

• Solves the relativistic equation of motion under the Lorentz force for each marker-particle

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n + q\Delta t \left[ \boldsymbol{\mathcal{E}}_{n+\frac{1}{2}} \left( \boldsymbol{x}_{n+\frac{1}{2}} \right) + \boldsymbol{v}_{n+\frac{1}{2}} \times \boldsymbol{\mathcal{B}}_{n+\frac{1}{2}} \left( \boldsymbol{x}_{n+\frac{1}{2}} \right) \right]$$

**p** is the particle momentum **q** is the particle's charge **v** is the velocity. **p** =  $\gamma m \mathbf{v}$ , where **m** is the rest mass  $\gamma = [(\mathbf{p}/mc)^2 + 1]^{1/2}$ 

 Villasenor and Buneman current deposition scheme [Villasenor J & Buneman O 1992 Comput. Phys. Commun. 69 306], always satisfied: ∇ · E = ρ/ε<sub>0</sub>, where ρ is the charge density.

イロト イボト イヨト イヨト

PIC methods in general Laser Wake Field Collider

#### Particle shape

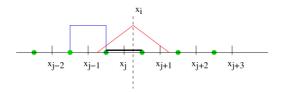
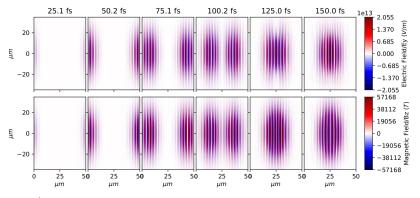



Figure 3: Second order particle shape function

#### First order approximations are considered

$$F_{part} = \frac{1}{2}F_{i-1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2 + \frac{1}{2}F_i\left(\frac{3}{4} - \frac{(x_i - X)^2}{\Delta x^2}\right)^2 + \frac{1}{2}F_{i+1}\left(\frac{1}{2} + \frac{x_i - X}{\Delta x}\right)^2$$

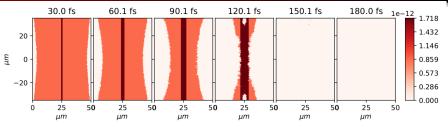

[EPOCH 4.0 dev manual]

イロト イヨト イヨト イヨト

3

PIC methods in general Laser Wake Field Collider

## Colliding fields using EPOCH




Laser parameters: wavelength of  $\lambda = 1\mu m$ , full pulse length  $\Delta_t = 52$ fs, focus diameter is  $2R = 40\mu m$ ,  $3.0 \cdot 10^{19} \text{ W/cm}^2$  top intensity. [Papp, I., et al., NAPLIFE Collaboration, Phys. Lett. A, (2021)]

Image: A marked and A mar A marked and A I ≡ ►

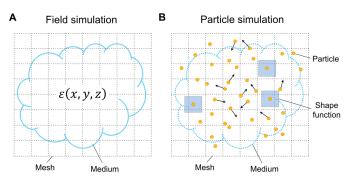
PIC methods in general Laser Wake Field Collider

#### Multi-photon ionisation



EPOCH includes a number of ionisation models by which electrons ionise in both the field of an intense laser and through collisions.

#### Epoch also includes Coulomb collisions


[K. Nanbu, S. Yonemura. Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle. *Journal of Computational Physics*, vol. **145**, pp. 639?654 (1998)]

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Э

Approach comparisons PIC approach

#### Nanorod



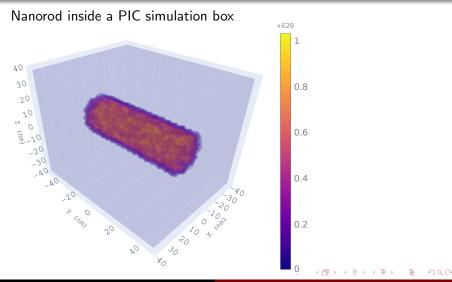
[W. J. Ding, et al., Particle simulation of plasmons Nanophotonics, vol. 9, no. 10, pp. 3303-3313 (2020)]

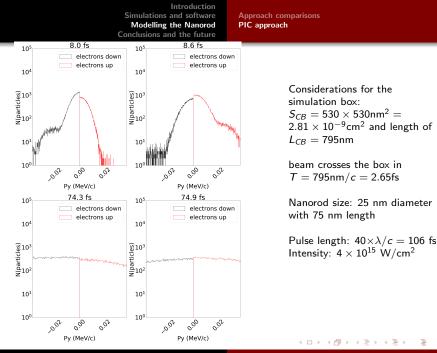
イロト イヨト イヨト イヨト

Э

Approach comparisons PIC approach

#### Nanorod


Field solver:  $\epsilon(\omega) = 1 - \frac{\omega_p^2}{(\omega^2 + i\gamma\omega)}$ where  $\omega_p$  is the plasma frequency:  $\sqrt{\frac{n_e e^2}{m'\epsilon_0}}$   $\gamma$  is the damping factor or collision frequency:  $\gamma = \frac{1}{\tau}$  and  $\tau$  is the average time between collisions Particle simulation:


$$\frac{\partial \boldsymbol{E}}{\partial t} = \frac{1}{\mu_0 \epsilon_0} \nabla \times \boldsymbol{B} - \frac{\boldsymbol{J}}{\epsilon_0}, \ \frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times \boldsymbol{E}$$
  
 $\gamma_i m_i \boldsymbol{v}_i = q_i (\boldsymbol{E}_i + \boldsymbol{v}_i \times \boldsymbol{B}_i), \ \gamma_i \text{ is the relativistic factor}$ 

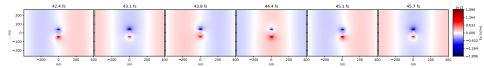
イロト イヨト イヨト イヨト

Approach comparisons PIC approach

### Kinetic Modelling of the Nanorod






Workshop on Laser Fusion

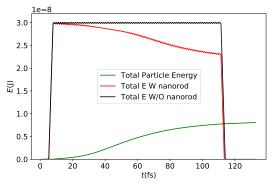
a spin-off from heavy-ion collisions ICNFP 2021

Approach comparisons PIC approach

#### Kinetic Modelling of the Nanorod

#### Evolution of the fields




 $E_y$  evolution video

・ロト ・回ト ・ヨト ・ヨト

Э

Approach comparisons PIC approach

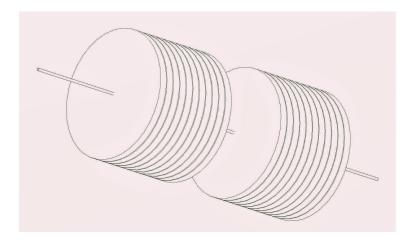
### Kinetic Modelling of the Nanorod



energy in the box without nanorod antenna  $3 \times 10^{-8}$  J (black line) nanorod absorbs EM energy reducing it to  $2.3 \times 10^{-8}$  J (red line) deposited energy in the nanorod (green line) results in light absorption cross section nearly 35 times higher than its geometrical cross section

Workshop on Laser Fusion

Conclusions FBPIC simulation

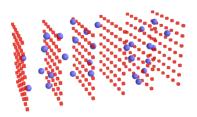

## Conclusions, Looking forward

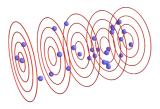
- The model returns the analytical calculations regarding the absorption cross section
- The model is highly idealized
- Next step is material around the nanorods
- Fully dedicated software for the project is required
- Next step is estimating the target pre-compression

イロト イポト イヨト イヨト

Conclusions FBPIC simulation

#### **Pre-compression**





<ロト < 四ト < 回ト < 回ト < 回ト < 回ト < </p>

E

Conclusions FBPIC simulation

#### Fourier-Bessel PIC method





**3D Cartesian grid** 

Cylindrical grid (schematic)

イロト イポト イヨト イヨト

[Rémi Lehe et al., A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm, *Computer Physics Communications* Volume 203]