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•Rapid, volume ignition in Inertial Confinement Fusion (ICF),to avoid Rayleigh-Taylor instabilities.
•Achieve simultaneous ignition by increasing absorption with

Au nano-spheres.

Objective

Alternatives in our investigations:
• same amount of DT fuel, without compression of radius R = 640 µm
•without ablator layer as in [11, 12]
• target density is 1.062 g/cm3
• absorptivity αK ≈ 8 cm−1

The sphere of the fuel, with an internal point at radius r. Let us chose the
x-axis so that it passes through the point at r and the center of the sphere.Then let us chose a point on the sphere, and the angle of this point from the
x-axis is denoted by Θ. Then the length between this surface point and the
internal point at r is:

ζ = (R2 + r2 − 2Rr cos Θ)1/2 , (1)
and then the propagation time from the surface point at angle Θ to the pointat r on the x-axis equals τ = ζ/c.
We intend to calculate the temperature distribution, T (r, t), within the
sphere, as a function of time, t, and the radial distance from the center of thesphere, i.e. radius r.

Considerations for the target
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↑ The temperature distribution as function ofdistance and time.

We have two steps of the evaluation:
•we calculate how much energy can reach a givenpoint at r from the outside surface of the sphere.
•we add up the accumulated radiation at position
r, we integrate dU(r, t)/dt from t = 0, for each
spatial position.Step 1:The radiation at distance ζ is decreasing as 1/ζ2.The total radiation reaching point r from the ribbonat Θ is

dU(r, t) ∝ 1
ζ2δ(ζ−√R2+r2−2rR cos Θ) , (2)

we integrate this for the surface of all ribbons.Step 2:Neglecting the compression and assuming con-
stant specific heat cv , energy of the pulse Q =2MJ (4π)−1(·640µm)−2 (10ps)−1 and varying absorp-tivity:
kB T (r, t) = 2πQR

c cV n


0 , if : tc < R−r
αK (r)tc
r

(ln tc
R−r − 1)+ R−r

r ,if : R−r < tc < R+r
αK (r)tc
r ln R+r

R−r − 2 , if : tc > R+r(3)
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Golden Nano-Shells – Resonant Light Absorption

↑ Golden nano-shells are imbedded in the DTtarget fuel for increased, resonant lightabsorption.

The point (rc, tc) where the spacelike and timelike partsof the surface meet:(
∂r
c∂t

)
Tc
= 1 tc =

 2cR
R2 − r2c

[ln R + rc
R − rc

]−1+(α ′K (r)
αK (r)− crc

)
−1

(4)
To increase absorption in the center of the target Goldennano-shells are imbedded in the fuel pellet so that theabsorption coefficient is linearly changing with the ra-dius. In the center, r = 0, αK = 30 cm−1, while at theoutside edge αK = 8 cm−1.

Simplified model and its evaluation

Temperature distribution in function of r and t, dotted line is the light cone.The absorption coefficient is linearly changing with the radius. In the center,
r = 0, αK = 30 cm−1 while at the outside edge αK = 8 cm−1. Temperatureis in units of T1 = H · R = 272 keV, and Tn = n · T1. The stars on thetemperature contour lines indicate the transition from space-like front atthe outside edge to time-like front in the middle.

Numerical solution of the model for rapid ignition

• In this model estimate, we have
neglected the compression ofthe target solid fuel ball, as well
as the reflectivity of the targetmatter.
•The relatively small absorptivitymade it possible that the radia-

tion could penetrate the wholetarget.
•The characteristic temperaturewas T1 = 272 keV, below thatthe ignition surface is time-like

hyper-surface, where instabili-
ties cannot occur.
•The detonation at a higher criti-cal temperatures, Tc > T3 occursafter the radiation reaches fromthe other side.

Discussion

Conclusion It is important to use the proper relativistictreatment to optimize the fastest, more completeignition, with the least possibility of instabilities.
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